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The finite-temperature Aq~4 theory of static Robertson-Walker (RW) space-time 
is extended to a case with background charge. In contrast to earlier work on 
static RW space-time, the curvature term is retained and its effect on the effective 
potential and phase transition are explicitly calculated. The spontaneous symme- 
try breaking aspects and its dependence on various factors are discussed. 

1. INTRODUCTION 

Recently the study of finite-temperature field theory has become increas- 
ingly important because of its possible application in various fields of phys- 
ics. In particular, s theory has been investigated by several authors 
(Connor et al., 1983; Kennedy, 1981; Denardo and Spallucci, 1981 ; Semen- 
off and Weiss, 1985a,b; Anderson and Holman, 1986; Roy et al., 1989). 
Field theory in an RW background metric is of special interest with regard 
to cosmological phase transitions. 

In this paper we choose a static RW space-time with a net interacting 
background charge and study finite-temperature effects on ~r theory by 
adopting the GEP (Gaussian effective) approach. 

The justification for using the GEP is that, being nonperturbative, it 
has several advantages over the loop-expansion method (Stevenson, 1984a,b, 
1985) and contains one-loop as well as 1/N-expansion results in limiting 
cases for scalar fields (Stevenson, 1984a,b, 1985; Hajj and Stevenson, 1988). 
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Of the two versions of renormalization in GEP, we choose the "auto- 
nomous" version. The other version becomes "precarious" in 3 + 1 dimen- 
sions and faces a triviality problem. It also produces strange results at high 
temperature (Stevenson, 1984a,b, 1985; Hajj and Stevenson, 1988; Tarrach, 
1986). 

In this report we have excluded the open-universe case in RW space- 
time since it has already been reported (Roy et al., 1989; Tarrach, 1986) 
that finite-temperature GEP results are not much different from those for 
fiat space. 

Also in the present case we restrict ourselves to the case of a single 
chemical potential. However, the inclusion of more than one/~ is straightfor- 
ward. We present the derivation of the finite-temperature GEP in Section 2. 

Section 3 deals with the behavior of the GEP at T~0 ,  its phase transi- 
tional aspects, and its dependence on various parameters. Section 4 includes 
remarks and discussions. 

2. CALCULATION OF FINITE-TEMPERATURE GEP 

We start with the line element (Hawking and Ellis, 1973) 

ds 2 = dt  2_  aZ[dz2 + f2()c)(d02 + sin 2 0 d~p2)] (2.1) 

where f (z )  is determined by the constant space curvature k, which is norma- 
lized to 1 in our case (static universe), and 

f ( z ) = s i n ( z ) ,  O<_z<_~r for k =  1 (2.2) 

The dimension of the spatial line element is carried by a 2. The introduction 
of the conformal time 77 = a - i t  and use of coordinates 0, Z, 0, cp enables 
one to write the following nonzero metric tensor components (Birell and 
Davies, 1982) : 

gO0 = g,1 = a-2, g22 = _ [ a f ( z ) ] -  2 

g33=_ [ a f ( z )  sin 0]-2 (2.3) 

Let us consider the following N scalar fields in curved space: 

~" = - �89 ) - (m 2 + ~R)q~ 2 - 23. ((o2) 2] (2.4) 

where a = 1, 2, 3 , . . . ,  N; ~ is a numerical factor; ~R~02 denotes the coupling 
between gravitational and scalar fields; g = det gu ~ = -  [a4f2(x) sin 012; and 
V~ is the covariant derivative. 
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The free field is given by (Birell and Davies, 1982) 

goa = f dfi(k) [akuk(z ) + a~ u~,(Z)] (2.5) 

a~-, ak are the creation and annihilation operators. The function uk(z) can 
be expressed as 

u~,(Z ) = yk(X)Zk( r/)a --1 (2.6) 

with 

Zk(17) = 2(Wk) - 1/2 e-  iwk, 

and y1,(x) is a solution of 

A3yk(x) = - (k z -  1)yk(x) 

and has the form 

(2.7) 

(2.8) 

and 

K=(k , l ,m) ,  k = l , 2  . . . .  , l = 0 , 1  . . . .  , k - I  (2.10) 

m = - l ,  - / + 1  . . . .  , l  

The measure for a static universe (k = 1) is given by 

dfi= E 
kiln 

Now we take the trial fields in the form 

go,(x) = (~)~ + ((0n(x)), (2.11) 

where (goo)~ is the constant background field and (gon(x)); is the ith free 
quantum field with trial mass f~. The ground state corresponding to gon(x) 
is 10)~, which satisfies ak]0)n = 0. Now equation (2.8) gives 

w~,=a2~ 2 -  1 + k 2 (2.12) 

where Ytm(O, go) denotes spherical harmonics and the properties of zr + kl can 
be found in Parker and Fulling (1974) and Bander and Itzykson (1966). For 
static RW space-time 

yk(x) = 7rk+t Yt,,,( O, go) (2.9) 
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The Hamiltonian corresponding to (2.4) is given by 

1 2 2 I H= ~ a f  (Z) sin 0 (On~Oa)(On~Oa) + hU(O~q~,,)(ajq~,~) 

(2.13) 

We introduce a parameter p by replacing 0n by O n "4- i]./ [the method followed 
by Kapusta (1981) in flat space]. Here we consider a single p, i.e., we 
take a = 1, 2 (Haber and Weldon, 1982) in equation (2.13). However, the 
extension to more than one # is straightforward. In general the (r are not 
necessarily the same, but for the sake of simplicity we choose (q~0)2 = 0 and 
hence we shall write (~Oo)i = ~00. Also we choose the same mass parameter 
for the ~oi(x). Calculating (0 [HI 0>n and dropping the unimportant factor 
f2(x ) sin 0 (Roy et al., 1989; Tarrach, 1986), one gets the GEP Vc and the 
result is 

I a4 
1 2 2 2 2 2 4 4 Va(qgo, fL p) = IVT + ~(a m - M ) +-~ m r + ~a r 

_ p22 q~ + 3A, (I~T) 2 + 6,q,a2 ~po2Io vr ] (2.14) 

For evaluating <0 [Hl0>n we have used the following renormalization condi- 
tions (Tarrach, 1986) 

f d3x = 6(k, k') h l/2yk(x)y~,(x) 

[ak, ak +] =~(k, k') (2.15) 

f d-p(k') ~(k, k ' ) f ( k ' )= f ( k )  

In equation (2.14) we have written M2=a2f l  2 -  1 and have redefined the 
bare parameter p so as to absorb the 1/a 2 term in it. The general form of 
the integrals appearing in equation (2.14) is given by 

IVN v = f (dk)n [w~] N (2.1 6) 

where wk is given by equation (2.12). 
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Following the method of introduction of/1 by Kapusta (1981) in flat 
space and using equation (2.11) and taking the appropriate measure in RW 
space-time, we obtain the covariant form (Raditi, 1986) of IF,  

_ ~ d~ {ln[(w.-i~)2+w~J 

+ ln[(w,, + i~)2 + w~] } lye(x) [~ (2.17) 

The integral over the momentum component becomes (Anderson and Hol- 
man, 1986) 1/fl ~___~ and w~ is replaced by 2~n/fl and the measure 
j'd~i lyk(x)l 2 is given by (1/4~2)~ ~ k 2 (Tarrach, 1986). So equation k=l 
(2.17) becomes 

w 1 ~ k 2 
I~ =-  ~, 75  ~ {ln[(w~-il~) 2+k2+M2] 

~ k = l  q'T~" n=--oo 

+ ln[(w,+ il.t)2 + k2 + M2]} (2.18) 

with M2=a2f~ 2- 1. We write I~=I+I ' ,  with 

k 2 
I =1 ~ ~ z  ~_ ln[(w,-il~)2+k2+M 2] (2.19a) 

~ k = l  

and 

1 k 2 
I '=-  ~ ln[(w,+il~)2+k2+M 2] (2.19b) 

Using the representation (Randjibar Daemi et al., 1984) 

lnX = - d x - s  (2.20) 
d S  s=0 

and then using the F-function representation of X - s  we get 

1 d 1 ~ k2 
I =  --4~2fl dS F(S) k=l 

x ~ exp{-[k2+MZ+(w~-il~)2]t}t s-I dt[s=o (2.21) 
n=-oo 

Now expressing (2.21) in terms of the theta function 03 and ~3, we have 

;? 1 d 1 t s-I e-a2n2tff3(t)(-ir)l/ZO3(z, r)ls=0 (2.22) 
I= 4~2fl dS F(S) 
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where cr3(t) is given by (Randjibar Daemi et al., 1984) 

0"3(0 = ~ k 2 exp[-(k 2-  1)t] 
k=l  

and 

Z = - il~fl/27r and i / r  = 4rtt/fl  2 

Obtaining a similar expression for I '  and using the properties of the 03 
function (Gradshteyn and Ryzik, 1982), we have 

I V  = It  + I,(f~ ) (2.23) 

with 

and 

oo 
(2.24) 

i 
o o  

I ~ -  1 d 1 a3(t)ts_3/2 e_a2n2t 
2/1~ 5/2 dS F(S)  

• ~ e -n2#2/4t cosh pf ln  dtls=o (2.25) 
n ~ 1 

It is worth mentioning that even in our case I V  splits into temperature- 
independent, II(f~), and temperature-dependent, I~, parts, as in the case 
without/1 in curved space (Roy et al., 1989) and fiat space (Hajj and Steven- 
son, 1988). Using the properties of 0"3(0 and evaluating standard integrals 
(Gradshteyn and Ryzik, 1982) appearing in (2.25), we obtain 

"~51 oo LnZfl 2[a2~-~2 + ~  Kl(a~fln) I{ = - ~=1 K2(an/3n) 

q K~ ] cosh/~/3n (2.26) 

Now using the integral representation of Kv(z), we get, after a few steps of 
straightforward calculations, 

I~ = - 1  (4//5+ 1//3 ..{_ H I ]  
lr 2\ /3 4 2 ~  ~ ]  (2.27) 
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The integrals Hi ,  which have the same form as that of  Haber and Weldon 
(1982), are given by 

1 ~ o  x 1- 1 dx 

Hi = F ~  J0 ( x2 + rh2) l/2 

{ 
x exp[(x 2 + rh2)l/2 _ rrh]_ 1 

1 } 
Jr exp[(x 2 + thi)l/2 + rift]_ 1- (2.28) 

with th = aloft, r = I-t / a ~ .  
Evaluating Hi following Haber and Weldon (1982), we get 

rr 2 M 2 - 2 1 1  z ( M 2  - ]./2) 3/2 

I ~ = - 4 5 f l  4~ 12fl 2 6tcfl 

/12 M4 (ln 4Ir ~,) 
24 2 (3ar u2) + \ 

+ O(M6f l  2, M4f12f12) . . . (2.29) 

It is to be noted that ]/.t] <af t ,  which is required for the same reason 
mentioned in Haber and Weldon (1982). Equation (2.29) contains the curva- 
ture term even in the absence of/1.  Also in the limiting case our result 
reproduces exactly the flat-space results of  Haber and Weldon (1982). 
Further, it can be easily verified that the integrals I v'r satisfies the relation 

diN= f i (2N-  1)IN- 1 (2.30) 
dfi 

with fi = a l l  
For reasons discussed earlier, we renonnalize the parameter following 

an autonomous approach (Stevenson and Tarrach, 1986) and use the follow- 
ing relations of Hajj and Stevenson (1988) and Stevenson and Tarrach 
(1986) : 

,~_ 1 r = i _  1(~)(I)2 (2.31) 
121_ 1 (2)' 

where 2 is a finite parameter bearing the dimension of mass; we normalize 
the bare parameters m, p with the help of the following relations: 

/12- /t~ aZm2+ 12M0(0) = 3  a2M~ (2.32) 
I_,(2) '  2 I_,(2) 
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Mo bears the dimension of mass and po is a finite parameter and will be 
recognized as the chemical potential by defining it in terms of charge density 
p (Kapusta, 1981 ; Haber and Weldon, 1982) 

dVG 
p = - - -  (2.33) 

duo 

Minimizing Vc with respect to fi and rearranging, we get 

M 2 = a2m 2 + 12~, (Io + a2~o g) + 12Mo ~ (2.34) 

In obtaining equation (2.34) we have used the relation (2.23). Now using 
(2.32), we get from (2.14) 

d~'G_ �89 z_  8Za2cp 2 + ].t2 ) (2.35) 
dE 

Using (2.31) and (2.32) we can write equation (2.35) as 

d~'G I-~(Yc) a2(M2_ 3a2~2o ) la~a 2 (2.36) 
d~ z 2 2 

Again utilizing the renormalization conditions (2.31) and (2.32), we get 
from (2.34) 

M2 7 2 2  1 = ~a ~o + - -  [a2Mo 2 + A(fi, x) + ~Io~(fi)] (2.37) 
1-1(2) 

In obtaining equation (2.37), we have evaluated the relations [I0(0)- I0(~)] 
and [I_ t ( ~ ) -  I_ ffs by using the properties of the generalized i-function 
(Toms, 1980) [the method is same as that of Roy et al. (1989)]: 

~(S, a )=  ~ (n2+a2) - s  (2.38) 

Using a Laurent expansion of the series appearing in (2.38) about the poles, 
we have 

{( S, a) = D_,(n, a) +Do(n, a) + O(S + n -  �89 (2.39) 
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and for D-1 and Do we have used the results of Toms (1980). Finally, the 
results are 

Io(0)- Io(~) = ~ [I_ 1(~)+ ~2 r M2] (2.40) 

x) =x_l(fi)-z_l(x) 

_ 3~(3) (a2~2_22) when ag~<2 (2.41) 
4~ 2 

1 a 2 ~  2 _ 1 
- - when af~ > ~ (2.42) 4~r2 In if2_ 1 

With the help of equation (2.37) we get from (2.36) 

d~'a a 2 
2 2 2 - [(a M6 - /3o)+A(x ,y)+  ~Io~(fi)] (2.43) 

d ,o 2 

where 

A(x ,Y)=4T~(3  ) ~ - - 2 2  for M _ 2  

I M2 3 1 _ M 2 l n ~ _ _  1 12re 2 2 ~(3)M2 for M > 2  (2.44) 

Hence, integrating equation (2.43) with respect to qb 2, we get, after subtract- 
ing the zero-point energy, 

_ a 2 

Vc- D =-f (aZMo 2 - 112)~ 2 + F(fi, x) + I~ (2.45) 

with 

F(~, x) 3 -  _ _  (-~.~ - x 2 ) -- 327r2 ~(3)M4 - 1  for M<_x 

- M 4 [  M2 1 1 
321r 2 In x2 2 ~(3)M2 for M > x  (2.46) 

where x 2= 22-  1 and D is the constant of integration resulting from the 
solution of (2.43). While performing the integration, we have used the fact 

M 2 2 2.a~2 that ~- ~a w0 [cf. (2.37)]. Following the arguments and steps of Hajj and 
Stevenson (1988), it can be easily verified that the constant D appearing in 
equation (2.45) is nothing but the zero-point energy. 
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3. SPONTANEOUS SYMMETRY BREAKING WITH FIXED 
CHARGE DENSITY 

The system under consideration has a background charge introduced 
by p, which in turn is related to p0 via equation (2.33). Using (2.45), we 
have from equation (2.33) 

p= - (  dI-~-~l I +,0r (3.1) 
\dlZo/ ( T,M) . . . . .  

From equation (3.1) it is obvious that the value of p0 for a given r can be 
obtained for a fixed charge density p, since I~ can be expressed in terms of 

,,~ 2- a2(i)2"~ ePo (M 2 - ~ o). Thus, ~'o can be computed [cf. (2.45), (2.46)] for different 
r after obtaining P0 for a given charge density from (3.1). 

The computation results show that the nature of the Vo-r curve does 
not depend on a 2 qualitatively. In this regard our conclusion is the same as 
that of others (Roy et al., 1989; Tarrach, 1986) (since a 2 may be absorbed 
in bare parameters). Figure 1 shows the variation of ~'~ with r at different 
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~'c-dP curve for  a2=l, Mo2=O, p = 0 . 0 0 1 ,  and  (a) T=O, (b)  T=0.5, (c) T = 0 . 7 ,  
(d)  T =  T~ = 1.35, (e) T =  1.5, (f)  T =  1.8. 
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Fig. 2. p -Tcurve  for a 2= 1.0 and (a) 34o2=-0.05, (b) Mo 2=-0.1 .  
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Fig. 3. Mo2-Tc curve for p=0.001, a 2= 1.0. 
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temperatures .  A tempera tu re -dependen t  cons tan t  t e rm is added  to each curve 
so tha t  all curves coincide at  the origin. F o r  the c o m p u t a t i o n  of  Figure  1 we 
have taken  x = 1, M 2 = 0, p = 0.001, and a 2 = 1. The  critical t empera tu re  Tc 
for  Figure  1 is 1.35. We have  not  presented V a - ~ o  curves for  different a 2 
for  reasons a l ready ment ioned.  Again  it is observed (Figure 2) tha t  for  
Mo 2, a 2 remaining fixed, Tc increases with increasing value o f  p. Also it is 
no ted  tha t  for  different masses  (M02 = - 0.05, - 0 . 1 ) ,  the critical t empera tures  
do not  vary  after a certain value of  p (=0.12) .  

Finally,  F igure  3 shows the var ia t ion  o f  Tc with M02 . I t  is interesting to 
note  tha t  for  M 2 > 0 the symmet ry  breaking  does not  occur  and  Tc increases 
with M 2,  acquir ing a m o r e  and m o r e  negat ive value. Moreover ,  our  result 
reproduces  the flat-space results o f  Hajj  and  Stevenson (1988) in the limiting 
case with p = 0. 

4. DISCUSSION AND REMARKS 

We have  chosen an a u t o n o m o u s  G E P  app roach  instead o f  a loop  expan-  
sion me thod  since the fo rmer  app roach  has several advantages .  Also it has  
been observed (Hajj  and Stevenson,  1988) tha t  loop  expans ion  does not  give 
the correct  h igh- tempera ture  behavior .  Moreover ,  we see that  even in curved 
space with a b a c k g r o u n d  charge,  a f in i te- temperature  Vc appears  in a simple 
fo rm and the symmet ry  res tora t ion  occurs at  high tempera ture .  Finally,  we 
add  that  we have  considered a single /~. However ,  the extension of  the 
present  case to m o r e  than  one/~ is s t ra ightforward.  
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